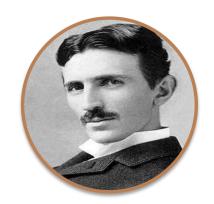


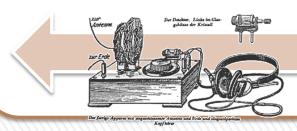
MESA REDONDA: NECESSIDADES DE ESPECTRO EM ÁREAS SECTORIAIS ESTRATÉGICAS

Universidade de Aveiro Visions

» Prof. Nuno Borges Carvalho

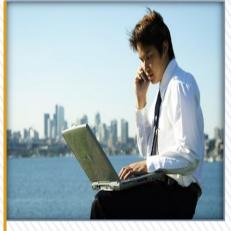
Dept. Electrónica, Telecomunicações e Informática


- » Instituto de Telecomunicações Universidade de Aveiro
- » nbcarvalho@ua.pt http://www.av.it.pt/nbcarvalho


History

Marconi was an Italian inventor. He is considered as the father of radio communication. He shared the 1909 Nobel Prize in Physics with Karl Ferdinand Braun "in recognition of their contributions to the development of wireless telegraphy".

Tesla demonstrated wireless energy transfer to power electronic devices in 1891 and aspired to intercontinental wireless transmission of industrial power in his unfinished Wardenclyffe Tower project.



Radio Communications

Broadcast Radio

Communications for the Masses

- FM/AM
- DAB

Television

High Social Impact

- DVB-T
- DVB-S

Mobile Phones

Mimicking God Omnipresence

- GSM
- 3G
- 4G

Data Communications

Interconnecting people

WiFi

Evolution of Radio for the masses

RFID

Powering up small Tags's

- 13 MHz
- 868 MHz
- 2,4GHz
- 5,8 GHz

WPT

Power been transmitted via air !!

WPT

WiGig

High Speed Wireless Access

M₂M

Implementation of the IoT

5G

Cognitive Radios!!

Next Challenges Wireless Things

Next Challenges

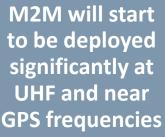
Battery-less Sensors for health applications

Car Energy Collector

RFID's

High Efficient Energy Collection

Domestic Appliances Wireless Energized


Agriculture passive sensors

Cognitive Radios will impose a large amount of technology developments

WPT will demand for narrow band channels, but the power can be huge!!

M2M will start to be deployed significantly at **UHF** and near

WIPE

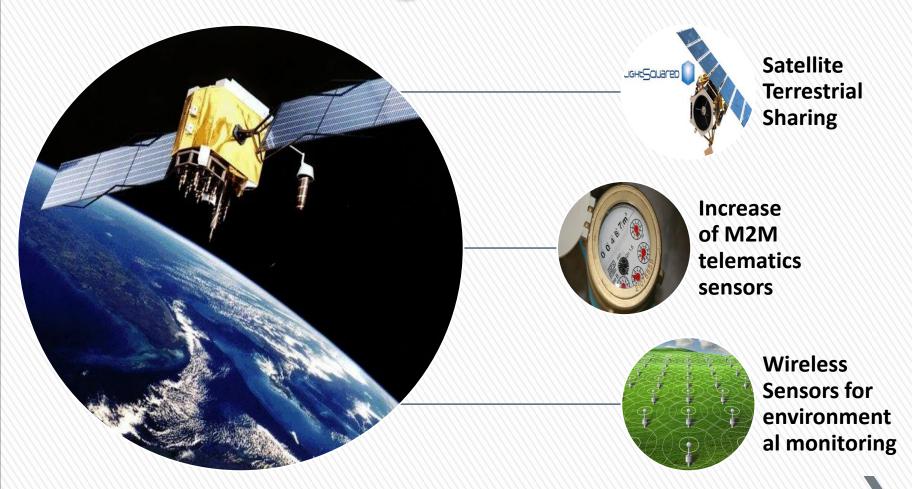
COST

Next Challenges WPT

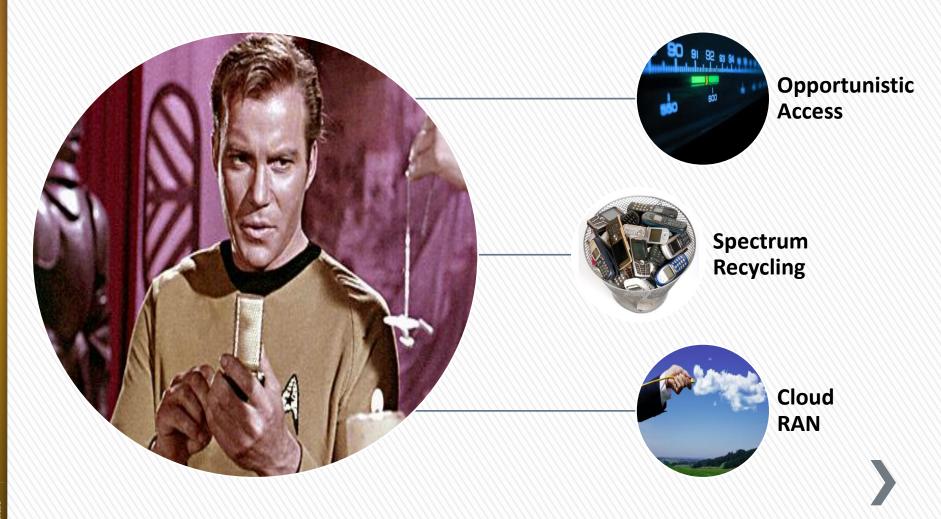
WPT for mobile phone charging

WPT for home appliances

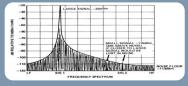
WPT for Electric Cars

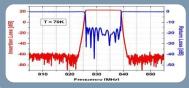


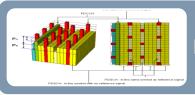
WPT for sensor charging

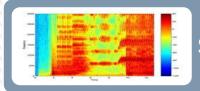


Next Challenges M2M


Next Challenges 5G


What are the Problems


Total spectrum use often is not dominated by transmitter parameter such as modulation efficiency and out-of-band emissions, but in practice by receiver limitations


Dynamic Range of sensing radios

Filter characteristics for M2M use near GPS

Filter characteristics for LTE over DVB-T interference

Signals have a time-frequency behavior

Next Frontier

"Transmitters don't use spectrum, receivers do" Michael J. Marcus

BSSID: a0:cf:5b:0f:9c:71

Frequency: 2412 MHz

Level: -80 dBm

Challenges University of Aveiro

Ludimar Guenda, Ana Collado, Nuno Borges Carvalho, Apostolos

Georgiadis and Kyriaki Niotaki, "Electromagnetic Geo-referenced

Santa Clara, EUA, January 2012.

Footprints for Energy Harvesting Systems", Radio and Wireless Week,

Operator Id: 20404

Type: GSM/UMTS

CID: 46088435