

Slotted Waveguide Antenna Design at W-Band Using Stacked Glide-Symmetric Metal Sheets

Sergio García Martínez s.garciam@upm.es

Adrián Tamayo-Domínguez, Pablo Sánchez-Olivares and José Manuel Fernández-González

Centro de Investigación en Procesado de la Información y Telecomunicaciones, ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040, Madrid, Spain

1. Introduction

mmWAVE o Radiocommunications → 5G o Autonomous vehicles

- Radioastronomy
- \circ Medicine

1. Introduction

2. Multilayer waveguide analysis

- 3. Slotted multilayer waveguide antenna
 - Design
 - Manufacturing
 - Results
- 4. Conclusions

2. Multilayer waveguide analysis

Unit Cell Parameters

• Layer height \rightarrow h = 0.6 mm • Gap \rightarrow gap [µm] • Period \rightarrow p [mm] • Diameter \rightarrow D [%p] • WR10 a: 2.54 b:1.27

Periodic Boundary Open Boundary

gap $gap = \mu h 0 + \mu m 30 \mu m$ $p = \frac{1}{2}.8 - m m^2 .1 mm$ D =D7₹ %7~%85 %

Max. Frequency of the LowerMode / Min. Frequency of the Upper Mode

W BAND 75 – 110 GHz

24/11/2023

Relative Bandwidth [Color]

W BAND 75 – 110 GHz

 $gap = 10 \ \mu m$ $p = 0.5 - 3.5 \ mm$ $D = 50 - 95 \ \%$

Dispersion Diagram

Propagation Constant

3. Slotted waveguide- Design

Parameter		Value (mm)
Unit cell period	р	1.85
Unit cell diameter	D_{hole}	1.47
Corrugation width	W _{corr}	0.3
Corrugation lenght	I _{corr}	0.6
Slot width	W _{slot}	0.25
Slotlenght	I _{slot}	1.55
Slot displacement	d1	0.29
Slot separation	dC	2.106

24/11/2023

3. Slotted waveguide- Manufacturing

24/11/2023

3. Slotted waveguide- Results

Without EBG

With EBG

24/11/2023

Slotted Waveguide Antenna Design at W-Band Using Stacked Glide-Symmetric Metal Sheets

3. Slotted multilayer waveguide antenna- Results

R R-UPM

WAL DO

TT7:/1.

Gain IEEE [dBi]

Measured Loss (with EBG structure) = 0.12 dB Measured Loss (without the EBG structure) = 1.05 dB

4. Conclusions

- Low-loss transmission line at W band
- \circ Scalable to higher frequencies
- Easy-to-manufacture,
 - high-precision and
 - low-cost technology

 $\circ~$ Lines at W band and up to 300 GHz

 $\circ~$ SWAs at 200 and 300 GHz

• Filters at W band

• Planar arrays at W band

References

- [1] Qualcomm, "5 key technology inventions in 5G NR Release 17," 13 April 2022. [Online]. Available: https://www.qualcomm.com/news/onq/2022/04/5 -key-technology-inventions-5g-nr-release-17. [Accessed July 2023].
- [2] Machine Design, "Saved by the Sensor: Vehicle Awareness in the SBI fiving Age," 18 January 2018. [Online]. Available: https://www.machinedesign.com/mechanical-motion-systems/article/21836344/saved-by-the-sensorvehicle-awareness-in-the-selfdriving-age. [Accessed July 2023].
- [3] Y-W. Wu, Z-C. Hao, Z.-W. Miao, W. Hong and J-S. Hong, "A 140 GHz High-Efficiency Slotted Waveguide Antenna Using a Lowcoss Feeding Network," IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 1, pp. 9498, 2020.
- [4] E. Garcia-Marin, J. L. Masa-Campos and P. SanchezOlivares, "Diffusion Bonding Manufacturing of High Gain W-Band Antennas for 5G Applications," IEEE Communications Magazine, vol. 56, no. 7, pp. 21 27, 2018.
- [5] A. Gomez-Torrent, T.Tomura, W. Kuramoto, J. Hirokawa, I. Watanabe, A. Kasamatsuand J. Oberhammer, "A 38 dB Gain, Low-Loss, Flat Array Antenna for 320-400 GHz Enabled by Silicon-on-Insulator Micromachining," IEEE Transactions on Antennas and Propagation, vol. 68, no. 6, pp. 44504458, 2020.
- [6] K. Lomakin, D. Simon, M. Sippel, K. Helmreich, E. Seler, Z. Tong, R. Reuter and G. Gold, "3D Printed Slotted Waveguide Array Antenna for Automotive Radar Applications in W-Band," 2018 15th European Radar Conference (EuRAD), pp. 389-392, 2018.
- [7] CORDIS EU, "Additive manufacturing of complexmillimetre waveguide antennas," 2023.
- [8] A. Vosoogh, A. Uz Zaman, V. Vassilev and J. Yang, "ZerGap Waveguide: A Parallel Plate Waveguide With Flexible Mechanical Assembly for mWave Antenna Applications," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, no. 12, pp. 2052059, 2018.
- [9] Q. Liao, E. Rajo-Iglesias and O. Quevedo-Teruel, "Ka-Band Fully Metallic TE40 Slot Array Antenna With GlideSymmetric Gap Waveguide Technology," IEEE Transactions on Antennas and Propagation, vol. 67, no. 10, pp. 6410-6418, 2019.

Slotted Waveguide Antenna Design at W-Band Using Stacked Glide-Symmetric Metal Sheets

Sergio García Martínez s.garciam@upm.es

Adrián Tamayo-Domínguez, Pablo Sánchez-Olivares and José Manuel Fernández-González

Centro de Investigación en Procesado de la Información y Telecomunicaciones, ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040, Madrid, Spain