

#### **INVISIBLE 5G**

17.º Congresso do Comité Português da URSI "Materiais inteligentes para a radiociência", 24 NOV. 2023

### EVOLVING 5G SMALL-CELLS TO 6G SMART RADIO ENVIRONMENTS

Prof. Rafael Caldeirinha

Polytechnic of Leiria and Instituto de Telecomunicações www.it.pt/rcaldeirinha







/instituto de /telecomunicações



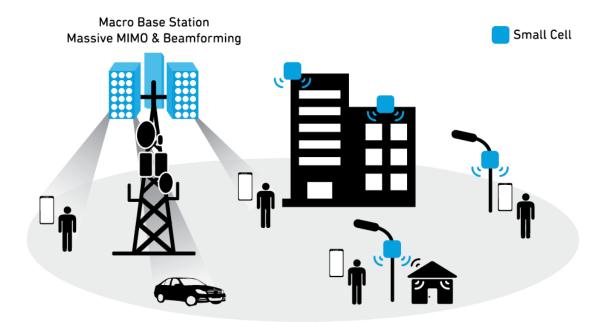
#### Outline

- 01. 5G Network densification
- 02. The role of street furniture
- **03. 5G SAWAPs technical requirements**
- 04. Antenna integration and product design
- 05. 6G Smart Radio Environments
- 06. Electromagnetic Building Certification (EMBC) ITED+
- 07. Final remarks

Ø

5G

INVISIBLE 5G








# **01. 5G Network densification**

#### 5G Small-cell integration



[Source: 5G RF, 2<sup>nd</sup> Qorvo Special Edition, 2020]







# **01. 5G Network densification**

#### Urban pollution – negative visual impact !



[Source: http://www.one-wilshire.com/connectivity/rooftop-spaces-wireless/]



[Source: https://www.maison-travaux.fr/maison-travaux/conseilspratiques/orienter-antenne-satellite-115483.html









#### ... in expanding mobile broadband?











#### ... in expanding mobile broadband?











#### ... in expanding mobile broadband?













... in expanding mobile broadband?

#### NOT GOOD EXAMPLES!











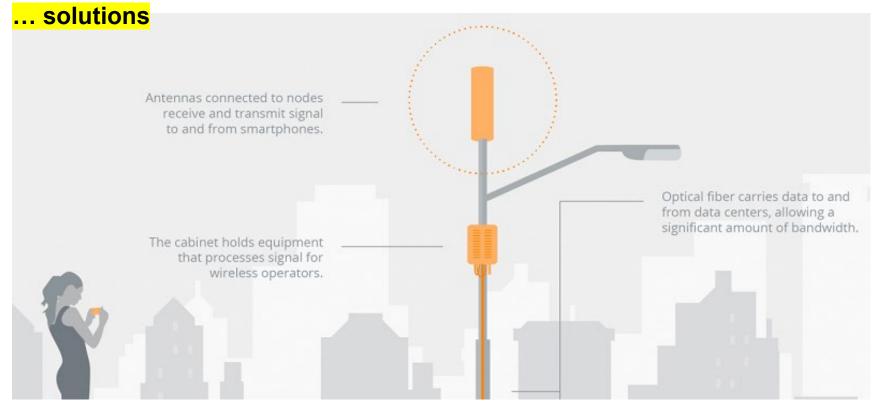


... in expanding mobile broadband?

#### NOT GOOD EXAMPLES!



















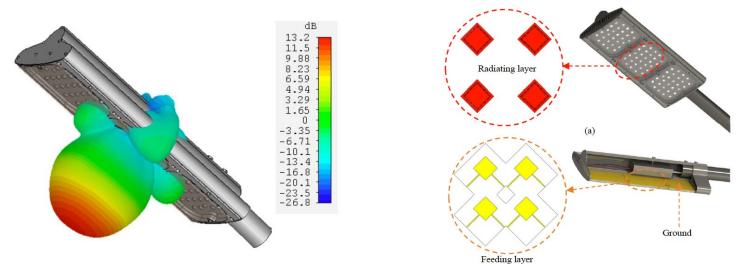







... solutions












... solutions > 5G Small-cells, low power, small-form factor, highly concealed, ruggedized and easy-to-deploy



[Source: A. Alieldin et al., "A Camouflage Antenna Array Integrated with a Street Lamp for 5G Picocell Base Stations," 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 2019, pp. 1-4.]



9D

5G

INVISIBLE 5G



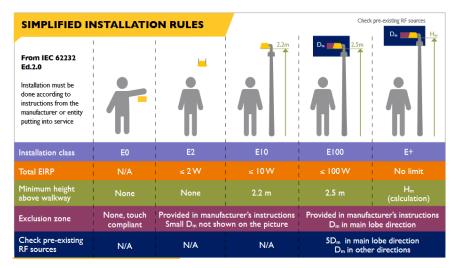


# **02.** The role of street furniture ... solutions












#### **03. 5G SAWAP technical requirements**

#### **Specific requirements:**

- Preferential operation Band: 3.4 3.8 GHz (n78)
- Chosen Antenna type (omnidirectional, directional/sectorial) will play an important role in its practical application (in the field) and in its associated gain
- Typical antenna gain should be within 5 and 15 dBi, depending on the antenna type, and should be appropriate for the small cell type to be installed



TYPICAL MAPPING OF INSTALLATION CLASSES FOR TYPICAL SMALL CELL DEPLOYMENTS

3GPP Config-Typical EIRP Typical Insta-BS Total Tx Gain uration Range llation Class Class Power 20 W 7 - 13 dBi 100 Mediun 2 bands E+ Range 400 W BS 10 W 7 - 13 dBi 50 1 band E100 200 W or E+ Local 5 bands 2.5 W 2 - 5 dBi 4 - 8 W E10 Area 1 band 0.5 W 2 - 5 dBi 0.8 E0 or BS 1.6 W E2 100 mW 0 - 3 dBi 0.1 E0 or 5 bands Home 0.2 W E2. BS 1 band 20 mW 0 - 3 dBi 0.02 E0 0.04 W

COVERAGE RANGE APPROXIMATION FOR FAVOURABLE CHANNEL CONDITIONS.

| Frequency<br>Band | Envir-<br>onment | Coverage range (kms) |       |      |
|-------------------|------------------|----------------------|-------|------|
|                   |                  | eMBB                 | URLLC | mMTC |
| 700MHz            | Rural            | 2.62                 | 2.69  | 12.5 |
|                   | Sub-<br>Urban    | 0.8                  | 0.82  | 7    |
|                   | Urban            | 0.59                 | 0.65  | 4.3  |
| 3.5GHz            | Rural            | 0.62                 | 0.65  | 5.65 |
|                   | Sub-<br>Urban    | 0.17                 | 0.17  | 2.09 |
|                   | Urban            | 0.09                 | 0.09  | 0.47 |
| 26GHz             | Rural            | 0.16                 | 0.17  | 1.52 |
|                   | Sub-<br>Urban    | 0.13                 | 0.13  | 0.97 |
|                   | Urban            | 0.08                 | 0.08  | 0.48 |

Source: M. N. Patwary, S. Junaid Nawaz, M. A. Rahman, S. K. Sharma, M. M. Rashid and S. J. Barnes, "The Potential Short- and Long-Term Disruptions and Transformative Impacts of 5G and Beyond Wireless Networks: Lessons Learnt From the Development of a 5G Testbed Environment," in IEEE Access, vol. 8, pp. 11352-11379, 2020.

Source: Source: Small cell Forum based on information from IEC 62232 Ed 2.10, 2017.









## **03.** 5G SAWAP technical requirements

#### Light Deployment Regime for Small-Area Wireless Access Points (SAWAPs)

Requirements for Article 57 of the European Electronic Communications Code

| Complementary supporting information                                                                                           |           |            |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|-----------|------------|--|--|--|
| Estimates (presented by the interested parties) of the volume requirements of a small cell in 2019 based on current technology |           |            |  |  |  |
| Estimated values (2010, based on surrent technologies)                                                                         | Single    | Tri-sector |  |  |  |
| Estimated volumes (2019, based on current technologies)                                                                        | SAWAP     | SAWAP      |  |  |  |
| Radio Unit (not including the Base Band Module, which is assumed to be placed in a different centralized location)             | 10 L      | 3x10 L     |  |  |  |
| Antenna                                                                                                                        | 3-5 L     | 10-15 L    |  |  |  |
| Transmission/backhaul (wireless)                                                                                               | 0,4/4-5 L | 0,4/4-5 L  |  |  |  |
| Power supply (auxiliary)                                                                                                       | 18 L      | 18 L       |  |  |  |
| Source: "Key comments to the EC proposal of Implementing Regulation for SAWAPs"                                                |           |            |  |  |  |









#### 04. Antenna integration and product design







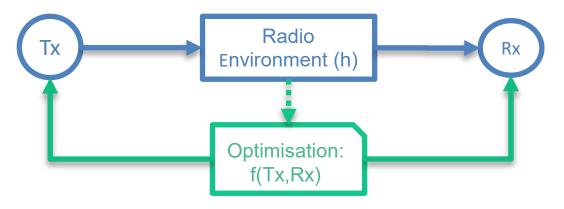






#### 04. Antenna integration and product design









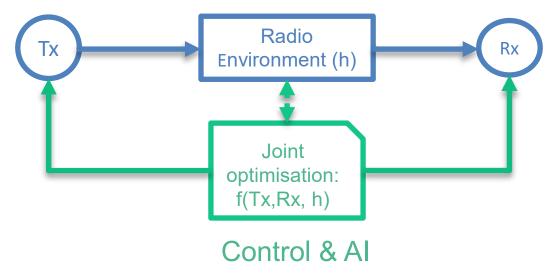



5G wireless networks are designed based on **end-points optimisation** for improving the network performance



#### Adaptation (end-points optimisation)

Renzo, M.D., Debbah, M., Phan-Huy, DT. *et al.* Smart radio environments empowered by reconfigurable AI metasurfaces: an idea whose time has come. *J Wireless Com Network* **2019**, 129 (2019).



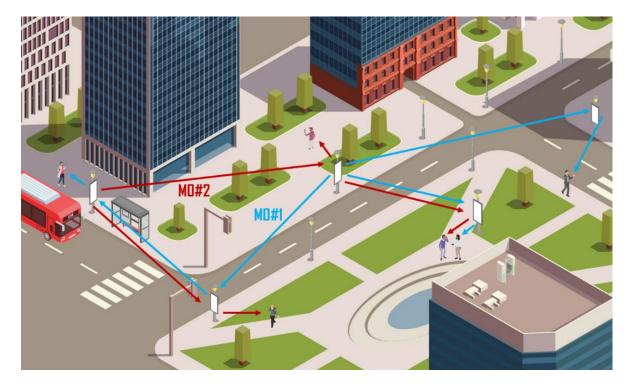


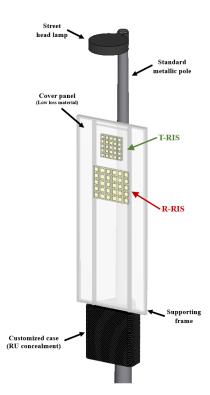





The radio environment becomes controllable ... and intelligent




Renzo, M.D., Debbah, M., Phan-Huy, DT. *et al.* Smart radio environments empowered by reconfigurable AI metasurfaces: an idea whose time has come. *J Wireless Com Network* **2019**, 129 (2019).



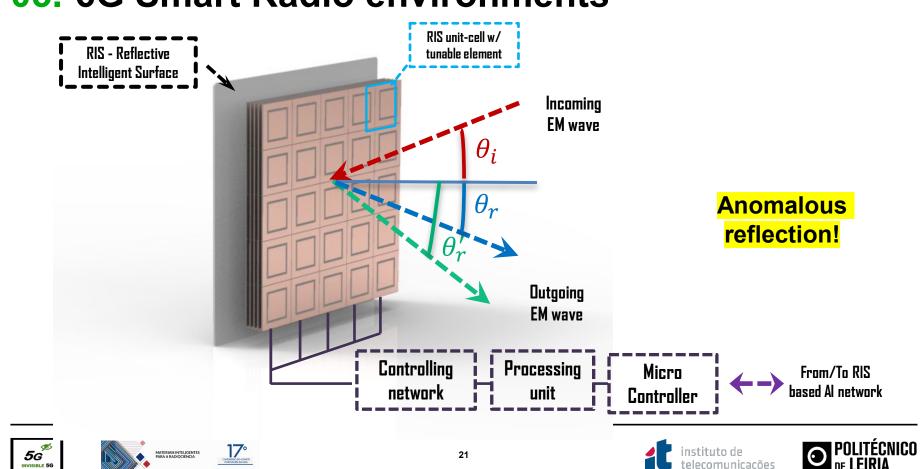




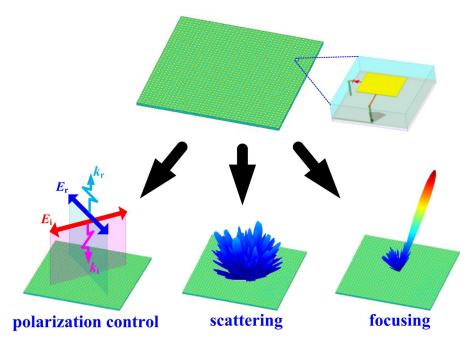








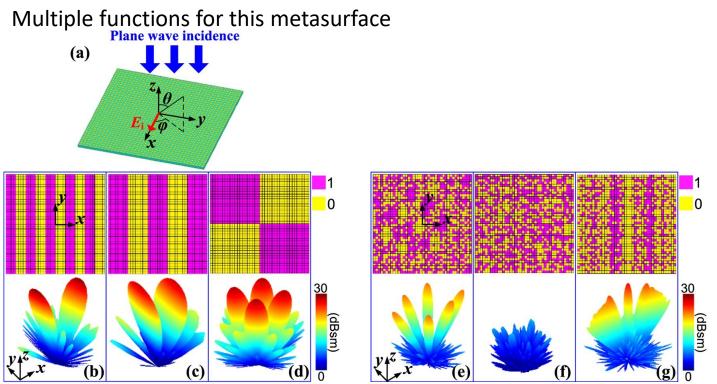







Multiple functions for this metasurface




Yang, H., Cao, X., Yang, F. et al. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci Rep 6, 35692 (2016). https://doi.org/10.1038/srep35692



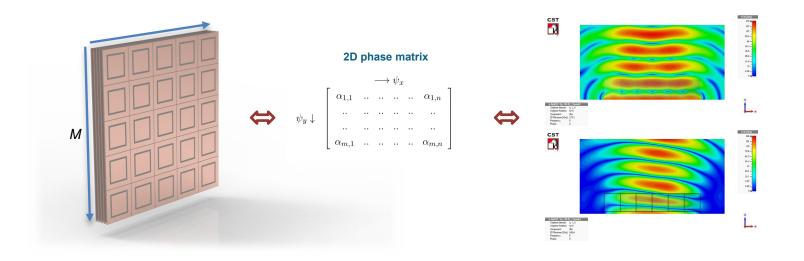








Yang, H., Cao, X., Yang, F. et al. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci Rep 6, 35692 (2016). https://doi.org/10.1038/srep35692





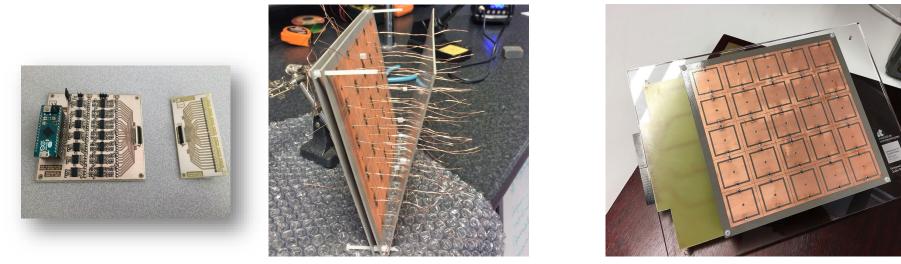





Metamaterial-inspired reconfigurable surface design



J. R. Reis et al., "FSS-Inspired Transmitarray for Two-Dimensional Antenna Beamsteering," in IEEE Transactions on Antennas and Propagation, vol. 64, no. 6, pp. 2197-2206, June 2016, doi: 10.1109/TAP.2016.2543802.









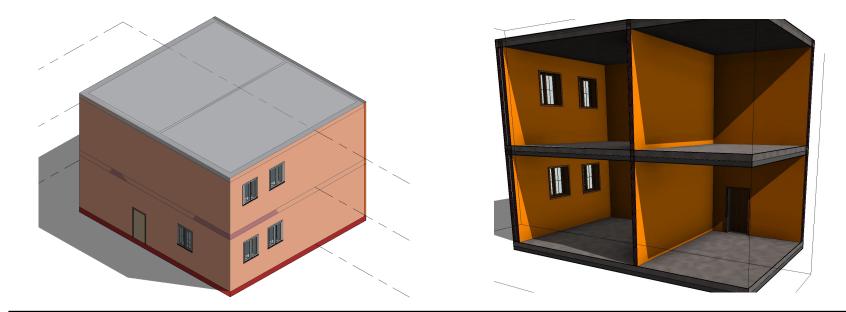

Metamaterial-inspired reconfigurable surface design



Assembling the prototype.

Finished prototype.

J. R. Reis et al., *"FSS-Inspired Transmitarray for Two-Dimensional Antenna Beamsteering,"* in IEEE Transactions on Antennas and Propagation, vol. 64, no. 6, pp. 2197-2206, June 2016, doi: 10.1109/TAP.2016.2543802.



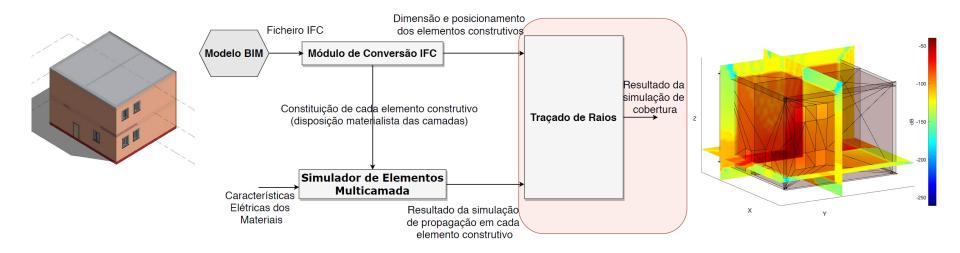







A Building Information Modelling (BIM) Plug-in for Future Electromagnetic Building Certification (EMBC)?












# A Building Information Modelling (BIM) Plug-in for Future Electromagnetic Building Certification (EMBC)?







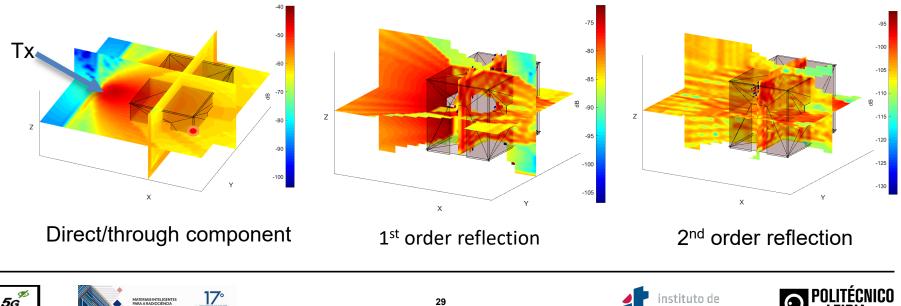






# A Building Information Modelling (BIM) Plug-in for Future Electromagnetic Building Certification (EMBC)?

| Walls Types                                                       | Layer Information                                                            |                                 |                                                    |                                      |
|-------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------|--------------------------------------|
| sic Roof:Cold Roof - Concrete                                     | Layer Upload File                                                            | Wall Type Upload Simulated File | Walls Types                                        | Layer Information                    |
| sic Wall:Parede_Dupla_HR                                          |                                                                              | Name                            |                                                    | Layer Upload File                    |
| Basic Wall Parede_Simples_HR 2<br>Floor Concrete-Commercial 362mm | Name                                                                         |                                 | Asphalt, Bitumen                                   |                                      |
|                                                                   | Tickness 0                                                                   | File                            | Rigid insulation                                   | Name Brick, Common                   |
|                                                                   | File                                                                         | Load File                       | Concrete, Sand/Cement Screed                       |                                      |
|                                                                   |                                                                              |                                 | Concrete, Cast In Situ                             | Tickness 150                         |
|                                                                   | Type File Load                                                               | File                            |                                                    | File Brick_Layer.mat                 |
|                                                                   |                                                                              |                                 | Reboco Exterior                                    | File Brick_Layer.mat                 |
|                                                                   |                                                                              |                                 | Brick, Common                                      | Type File Er Param ▼ Load File       |
|                                                                   | Simulation                                                                   |                                 | Air                                                |                                      |
|                                                                   |                                                                              |                                 | Rigid insulation                                   |                                      |
|                                                                   | Wall Type                                                                    |                                 | Brick, Common                                      |                                      |
|                                                                   | Wall File for                                                                | Load Wall File                  | Reboco Exterior                                    | Simulation                           |
|                                                                   | Simulation This file gives us information about all layers of this wall type |                                 | <ul> <li>Basic Wall:Parede_Simples_HR 2</li> </ul> |                                      |
|                                                                   |                                                                              |                                 | Reboco Exterior                                    |                                      |
|                                                                   |                                                                              | Run Simulation                  | Brick, Common                                      | Wall Type Basic Wall:Parede_Dupla_HR |
|                                                                   |                                                                              |                                 | Reboco Exterior                                    |                                      |
|                                                                   |                                                                              | View Results                    | ▼ Floor:Concrete-Commercial 362mm                  | Wall File for<br>Simulation          |
|                                                                   |                                                                              |                                 | Concrete, Cast In Situ                             | This file gives us information       |










A Building Information Modelling (BIM) Plug-in for Future Electromagnetic **Building Certification (EMBC)?** 



Componente

INVISIDIE 50

# 07. Final remarks

- Intelligent materials are key for deployment of 5G communication systems and beyond > considered as a new antenna technology!;
- Urban integration of reconfigurable antennas and intelligent surfaces required for smart radio environments > higher levels of concealment!;
- Regulatory aspects > Electromagnetic Building Certification (EMBC), and integration with BIM tools.











# Thank you!

# Questions, please?

#### rafael.caldeirinha@ipleiria.pl

#### www.it.pt/rcaldeirinha



instituto de telecomunicações

