Block Acknowledgment in IEEE 802.15.4 by Employing DSSS and CSS PHY Layers

Norberto Barroca
Luís M. Borges
Fernando J. Velez
Periklis Chatzimisios
Outline

- Introduction
- IEEE 802.15.4 MAC Channel Access
- Sensor Block Acknowledgment – Medium Access Control (SBACK-MAC) Protocol:
 - State Diagram
 - Scheme design with and without Block ACK Request:
 - Results
 - Sequence Spread Spectrum (DSSS) PHY layer
 - Chirp Spread Spectrum (CSS)
- Conclusions and Suggestions for Further Work

January 14, 2014 / Covilhã, Portugal
Wireless Sensor Networks (WSNs) have faced a tremendous advance both in terms of energy-efficiency as well as the number of available applications.

In order to fulfil the requirements of the set of different applications, new Medium Access Control (MAC) protocols and channel efficient mechanisms needs to be developed in order to respond to the demands from the next generation of WSNs.

Even by using optimized MAC protocols, if the WSNs platforms do not allow for minimizing the energy consumption in the idle and sleeping states, energy efficiency and long network lifetime will not be achieved.
One of the fundamental reasons for the IEEE 802.15.4 standard MAC inefficiency is overhead.

Within IEEE 802.15.4, the possible use of RTS/CTS, by itself, facilitates packet concatenation and leads to performance improvement.

The Sensor Block Acknowledgment MAC (SBACK-MAC) protocol has been proposed allowing for the aggregation of several acknowledgment (ACK) responses in one special Block Acknowledgment (BACK) Response packet.

Two different solutions are considered: The first one considers the SBACK-MAC protocol in the presence of BACK Request (concatenation) while the second one considers the SBACK-MAC in the absence of BACK Request (piggyback).
IEEE 802.15.4 MAC Channel Access

IEEE 802.15.4 at the Best-Case Scenario (no collisions)

\[\text{macAckWaitDuration} = \text{LastSymbol} + \text{aTurnaroundTime} + \text{phySHRDuration} + [6 \times \text{phySymbolsPerOctet}] \]

\[\text{macAckWaitDuration} = 1 + 12 + 10 + [6 \times 2] = 35 \text{ symbols} \]

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX/RX or RX/TX switching time</td>
<td>(T_{TA})</td>
</tr>
<tr>
<td>Duration of the synchronization header (SHR) in symbols for the current PHY</td>
<td>(\text{phySHRDuration})</td>
</tr>
<tr>
<td>The number of symbols per octet for the current PHY</td>
<td>(\text{phySymbolsPerOctet})</td>
</tr>
</tbody>
</table>
IEEE 802.15.4 MAC Channel Access

Parameters, symbols and values for IEEE 802.15.4 by considering the DSSS and CSS PHY Layers, 2.4 GHz band

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>DSSS</th>
<th>CSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY length overhead</td>
<td>$L_{H_{PHY}}$</td>
<td>6 bytes</td>
<td>7 bytes</td>
</tr>
<tr>
<td>MAC overhead</td>
<td>$L_{H_{MAC}}$</td>
<td>9 bytes</td>
<td>9 bytes</td>
</tr>
<tr>
<td>TX/RX or RX/TX switching time</td>
<td>T_{TA}</td>
<td>192 µs</td>
<td>72 µs</td>
</tr>
<tr>
<td>Short Interframe spacing (SIFS) time</td>
<td>T_{SIFS}</td>
<td>192 µs</td>
<td>72 µs</td>
</tr>
<tr>
<td>Long Interframe spacing (LIFS) time</td>
<td>T_{LIFS}</td>
<td>640 µs</td>
<td>240 µs</td>
</tr>
<tr>
<td>Backoff period duration</td>
<td>T_{BO}</td>
<td>320 µs</td>
<td>120 µs</td>
</tr>
<tr>
<td>Data Rate</td>
<td>R</td>
<td>250 kb/s</td>
<td>1Mb/s</td>
</tr>
</tbody>
</table>
IEEE 802.15.4 MAC Channel Access

IEEE 802.15.4 at the Best-Case Scenario (no collisions, $BE=3$, $CW_{\text{max}}=7$)

\[CW_{\text{max}} = (2^{BE} - 1) \]

\[CW = \left(\frac{CW_{\text{max}}}{2}\right) \times T_{BO} \quad T_{BO} = 320 \, \mu s \]

\[T_{DATA} = 8 \times \frac{L_{H\text{-PHY}} + L_{H\text{-MAC}} + L_{DATA}}{R} \]

\[T_{ACK} = 8 \times \frac{L_{H\text{-PHY}} + L_{ACK}}{R} \]

Average Maximum Throughput

\[S_M = \frac{8L_{DATA}}{(CW + ccaTime + T_{TA} + T_{DATA} + T_{TA} + T_{ACK} + T_{IFS})} \]

Average Minimum Delay

\[D_{\text{min}} = (CW + ccaTime + T_{TA} + T_{DATA} + T_{TA} + T_{ACK} + T_{IFS}) \]
The Block Acknowledgment (BACK) mechanism was previously introduced in the IEEE 802.11e standard.

The SBACK-MAC allows the aggregation of several acknowledgment (ACK) responses in one special frame called BACK Response.

Energy consumption will be greatly reduced because it is not needed to transmit and receive several ACK control packets (one for each data packet) which would lead to an extra energy waste.
IEEE 802.15.4 and SBACK-MAC – State Diagram
Layered Model Considered by IEEE 802.15.4 and SBACK-MAC

Carrier Sense Control
Radio Duty Cycle Control
Fragmentation
Retransmissions
Topology Control
Backoff

Collision Detection
Bit Error Calculation
Carrier Sense
Radio Control
Message Sending/Receiving
Start Symbol Detection
Modulation

Layered Model Considered by IEEE 802.15.4 and SBACK-MAC

Layered Model Considered by IEEE 802.15.4 and SBACK-MAC
SBACK-MAC – Block ACK Sequence

- SBACK-MAC with BACK Request (concatenation)

- SBACK-MAC without BACK Request (piggyback)
SBACK-MAC – Block ACK Sequence

SBACK-MAC with BACK Request

\[S_M = \frac{8 L_{DATA}}{(CW + (\text{ccaTime} + T_{TA} + T_{RTS_ADDBA} + H_3))/n} \]

\[D_{min} = (CW + \text{ccaTime} + T_{TA} + T_{RTS_ADDBA} + H_3)/n \]

\[H_3 = T_{TA} + T_{CTS_ADDBA} + n \times (\text{ccaTime} + T_{TA} + T_{DATA} + T_{TA} + T_{IFS}) + \text{ccaTime} + T_{TA} + T_{BRequest} + T_{TA} + T_{BResponse} + T_{IFS} \]

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time delay due to CCA</td>
<td>(\text{ccaTime})</td>
</tr>
<tr>
<td>TX/RX or RX/TX switching time</td>
<td>(T_{TA})</td>
</tr>
<tr>
<td>RTS/CTS ADDBA transmission time</td>
<td>(T_{RTS_ADDBA} / T_{CTS_ADDBA})</td>
</tr>
<tr>
<td>BACK Request/ BACK Response transmission time</td>
<td>(T_{BRequest} / T_{BResponse})</td>
</tr>
</tbody>
</table>
SBACK-MAC – Block ACK Sequence

SBACK-MAC with no BACK Request

\[S_M = \frac{8 L_{DATA}}{(CW + (ccaTime + T_{TA} + T_{RTS_ADDBA} + H_4))/n} \]

\[D_{\text{min}} = (CW + ccaTime + T_{TA} + T_{RTS_ADDBA} + H_4)/n \]

\[H_4 = T_{TA} + T_{CTS_ADDBA} + [(n - 1) \times (ccaTime + T_{TA} + L_{DATA} + T_{TA} + T_{IFS})] + ccaTime + T_{TA} + L_{DATA} + T_{TA} + T_{BR_Response} + T_{IFS} \]

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time delay due to CCA</td>
<td>(ccaTime)</td>
</tr>
<tr>
<td>TX/RX or RX/TX switching time</td>
<td>(T_{TA})</td>
</tr>
<tr>
<td>RTS/CTS ADDBA transmission time</td>
<td>(T_{RTS_ADDBA} / T_{CTS_ADDBA})</td>
</tr>
<tr>
<td>BACK Request/ BACK Response transmission time</td>
<td>(T_{BR_Request} / T_{BR_Response})</td>
</tr>
</tbody>
</table>
SBACK-MAC – Block ACK Sequence

IEEE 802.15.4

SBACK-MAC with BACK Request

SBACK-MAC with no BACK Request

CCA reports IDLE or BUSY to the PHY layer
Minimum average delay as a function of the payload size (in Bytes)

- 8-13% reduction
- 17-25% reduction
- 20-25% reduction
- 50-59% reduction

Legend:
- DATA/ACK (DSSS PHY)
- with BACK Request (DSSS PHY)
- with no BACK Request (DSSS PHY)
- DATA/ACK (CSS PHY)
- with BACK Request (CSS PHY)
- with no BACK Request (CSS PHY)
Maximum average throughput as a function of the payload size (in Bytes)
Bandwidth efficiency as a function of the payload size (in Bytes)
Conclusions

The SBACK-MAC protocol in the presence (concatenation) and absence (piggyback) of BACK Request has been proposed allowing for the aggregation of several ACK responses in one special packet.

By using the proposed BACK mechanisms we improved the channel use optimization by decreasing the overhead when compared to the actual payload size for all the cases.

The SBACK-MAC protocol is compliant with the IEEE 802.15.4 standard. Therefore, the proposed solutions can be integrated in the IEEE 802.15.4 standard or serve as the basis for the Wireless Next Generation Networks.

This work compared the use of DSSS (250 kb/s) and CSS (1 Mb/s) PHY layers and has shown the differences in the performance improvement between the absence of BACK Request and its use.
Suggestions for Further Work

Verify the results experimentally by using WSN platforms (e.g., Waspmote platform).
Thank you,
Questions are Welcome

Make everything as simple as possible, but not simpler. - Albert Einstein (JF)