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ABSTRACT
We model the Internet as a collection of Internet Service Providers
(ISPs) that transit and peer to meet an exogenous demand for the
transport of IP traffic among an arbitrary set of cities. The prices of
bandwidth and of transit are also exogenous. ISPs are assumed to
behave rationally and selfishly and therefore they provision the net-
work that maximizes their own profit regardless of how expensive
the overall network becomes. We call optimal to a network that
ISPs would build if they cooperated to reduce overall provisioning
costs; and we call inefficiency cost the additional cost to provision
a network at Nash equilibrium relative to the provisioning cost of
an optimal network. We show that inefficiency cost is primarily re-
lated to transit agreements. In fact, in a world where only peering
agreements exist there is no inefficiency cost. However, networks
with only peering agreements forgo the efficiencies of traffic ag-
gregation. Transit agreements help reduce provisioning costs by
realizing benefits from economies of scale. We show, by exam-
ple, that there exist Nash networks that are strictly more expensive
than optimal networks even when ISPs choose transit prices and
therefore the market to provision communication networks with in-
terconnection agreements designed they way the are today is ineffi-
cient. We show that inefficiency cost may be reduced, for example,
by enforcing side payments between ISPs. We conclude with an
analysis of the difficulties a regulator would face in endeavoring to
move a market from am inefficient Nash equilibrium to optimality.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer Communica-
tion Networks

General Terms
Design, Economics, Theory

Keywords
Cost of Anarchy, Peering, Transit, Provisioning Networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’05, June 5–8, 2005, Vancouver, British Columbia, Canada.
Copyright 2005 ACM 1-59593-049-3/05/0006 ...$5.00.

1. INTRODUCTION
The Internet is a collection of Internet Service Providers (ISPs),

or more precisely Autonomous Systems (ASes) [1, 15], which must
interconnect to allow users of different ISPs to exchange traffic.
Usually, ISPs use peering and transit agreements to interconnect
and to exchange information about how to reach destinations in the
Internet according to their interconnection strategies [35, 12]. Each
ISP is a separate entity that routes traffic and provisions its network
selfishly. In this paper, we will also assume that each ISP does
so rationally. In this context, a non-cooperative game among ISPs
arises and we look at the topology of the resulting network as that
obtained at Nash equilibrium [20, 33, 24, 39, 2]. However, it is well
known that the Nash equilibrium carries an inefficiency [28, 3, 20,
31]. For example, the aggregate cost to provision such a network
may be greater that the cost to provision the network that would
emerge if ISPs cooperated to reduce overall provisioning costs.

To start, we assume that demand, transit prices and the price of
bandwidth are exogenously given. The goal of this paper is three-
fold. First, we want to know how much more expensive a network
at Nash equilibrium can be relative to the cheapest possible net-
work ISPs could build to meet the same demand, that is, how large
can inefficiency loss become. Second, we want to know how in-
efficiency loss relates to the fact that ISPs use transit and peering
agreements to interconnect. Finally, we want to know if the mar-
ket for provisioning networks that interconnect using transit and
peering agreements is efficient, that is, if Nash networks become
as inexpensive as optimal networks when, for example, ISPs are
allowed to choose transit prices.

This paper is written at a time of dramatic reduction in the price
of bandwidth [8, 36], which leads smaller ISPs to peer directly
with each other, thus relying less frequently on transit from Tier-
1 ISPs [5, 27] and creating a ”peering-donut” around them. But,
the declining trend in the price of bandwidth put pressure on tran-
sit prices, which also started falling significantly. This trend in the
price of transit together with the steady increase in IP traffic world-
wide (about 110% between 2003 and 2004 [38] in most major inter-
national backbones) resulted in a substantial increase in transit rev-
enues [37]. Peering and transit agreements remain key constructs
of today’s communication networks and ISPs rely heavily on both
of them to interconnect and exchange traffic across the globe. Thus,
it is fundamental to study how these two types of interconnection
agreements impact provisioning costs when ISPs provision their
networks selfishly.



2. RELATED WORK
A significant literature has been recently published that looks at

aspects of inefficiency in communication networks. These works,
however, all define inefficiency in terms of latency and do not ad-
dress inefficiency in provisioning networks. The seminal work in
this area is provided by [20] who coined the term price of anarchy
as an upper-bound on the ratio between the aggregated latency over
all users in a network at Nash equilibrium, in which users route
their traffic selfishly, and that latency in the fastest possible net-
work, in which users would cooperate to route their traffic. It has
been shown that in a network where end-users route their own traf-
fic without using ISPs, the price of anarchy is sup{e∈E}[(λeµe +

(1 − λe))
−1], where λe satisfies l∗e(λer) = le(r), µe is defined

by µe = le(λer)/le(r), le(x) is the latency function for link e
and l∗e(x) is the marginal latency function for this link [33]. E
is the set of links in the network. For the case of affine latency
functions, this expression reduces to 4/3. For posynomial latency
functions of degree at most p, the price of anarchy is asymptotic to
[1− p(p + 1)−(p+1)/p]−1 as p →∞. It has also been shown that
this bound is tight; in fact it occurs in simple networks of parallel
links [33, 28, 3], and independent of the network topology [34].
For the cases of M/M/1 and M/G/1 queues the price of anarchy
approaches +∞ as the sum of traffic rates approaches the smallest
link capacity [33]. All these results are obtained assuming standard
latency functions, for which x.le(x) is convex.

It has been shown that these results can be extended to the case of
networks with capacities and with discontinuous latency functions
that are non-decreasing in the amount of traffic carried [6]. Particu-
larly, it has been shown that the price of anarchy is given by 1/(1−
ν(L)), where ν(L) = supv≥0,l∈L1/vl(v)maxx≥0{x(l(x)−l(v))}
and l is a latency function in the class of latency functions L. ν(L)
reduces to ρ when L is the set of standard latency functions. More
recently, these concepts have been applied to the case of a resource
allocation game. It has been shown that in a game where N users,
endowed with the same concave utility function for the transport
of traffic, submit individual payments for a single link they want to
use, whose cost is a convex function of the rate, and anticipate the
effects of their actions on the price to pay, the loss of efficiency is
no more than 1/(2N + 1) [18]. This result has also been used to
show that if costs are affine, efficiency loss is no more than 33%
even if users have general concave utility functions. Different ver-
sions of these results have been extended to competitive network
contexts. For example, it has been shown that when N > 2 firms
compete (each facing convex production costs), to meet an exoge-
nous demand D for the transport of traffic, by submitting to a fair
clearing house a supply function of the form D−wn/p, where wn

is a parameter chosen by firm n and p is the price charged to the
users, efficiency loss is no more than 1/(N − 2) [17].

The price of anarchy is an upper bound on the efficiency loss in
the network at Nash equilibrium and therefore it may convey little
information about the actual loss experienced. The relevance of the
price of anarchy depends on how often are we at the worst-case ef-
ficiency loss. This issue has been addressed by simulation over re-
alistic Internet-like topologies and traffic demands [30] considering
only intra-domain traffic. These simulations have shown that self-
ish routing achieves close to optimal average latency in such envi-
ronments, however such performance benefit comes at the expense
of significant increased congestion on certain links. Additionally,
it has been shown that most traffic in the Internet uses TCP [29],
which implements flow control. Hence, the rates at which users
send traffic to the network depend on the congestion experienced.

It has been shown that the cost function users minimize over each
TCP connection is approximately linear [20]. Thus, in this case, the
price of anarchy is less than 33% and, in practice, one can expect
losses to be small. In line with these arguments, it has been shown
that, in a general network, the measure of the set of rates that imply
a price of anarchy greater than ϕ is O(log(C(r))/ϕ), which is a set
with a small Lebesgue measure. In this expression C(r), defined
as the ratio between the aggregate running cost at Nash equilibria
to meet demand r and that to meet demand r/2, represents the crit-
icality factor of the network and serves as an upper bound for its
price of anarchy [11].

All these results do not take into consideration the existence of
ISPs and assume that end-users route their own traffic, a situation
that is not true whatsoever in today’s communication networks. As
such, the models currently used in the literature do not address the
issue of interconnection, which is key for the development of the
Internet. This paper examines how the Nash configuration of in-
terconnected networks differs from the cheapest possible network
ISPs could build if they cooperated.

3. INTERCONNECTION AGREEMENTS
Interconnection between ISPs is accomplished through peering

and transit agreements. Peering is a bilateral business and tech-
nical arrangement, whereby two providers agree to accept traffic
from one another, and from one another’s customers recursively.
Peering does not include the obligation to carry traffic to third par-
ties [21, 16, 23, 25, 26]. Direct peering has often been offered on a
Bill-and-Keep basis. However, there is an element of barter when
both networks do not perceive a roughly equal exchange of value.
For this reason, many of the largest ISPs impose minimum peer-
ing requirements that smaller providers willing to peer with them
must meet. These requirements usually include a minimum number
of locations for peering and a minimum bandwidth for the peering
connections.

Network Access Points (NAPs) are meet points where several
providers exchange traffic. ISPs deploy routing equipment at a
NAP where they establish multiple bilateral connections. Each
provider is responsible for the link from its premises to the meet
point. The meet point is usually owned and run by a separate entity
that leases space to the providers willing to co-locate there. NAPs
can also be distributed. NAPs are a convenient solution for peer-
ing because many providers come to the same physical place and
with short links within the meet point they can reach several other
providers. Additionally, an ISP can run a fat link from its premises
to the meet point that takes all the traffic to be delivered to peers
at this point, which is cheaper than deploying one link per peering
connection. However, the attractiveness of NAPs has resulted in
congestion, which has been one of their major problems [19].

ISPs can also act as transit providers [21, 16, 23, 25, 26]. A
transit agreement is a bilateral business and technical arrangement,
where one provider, the transit provider, agrees to carry traffic to
third parties on behalf of another provider. In most cases, the transit
provider carries traffic to and from its customers, and to and from
every destination in the Internet [21]. The major difference between
a peering agreement and a transit agreement is that in the latter
case the provider requesting the connection is seen as a customer
of the provider offering the service. The customer pays a fee for
transit service and expects some quality of service. In this paper, we
are interested in studying how both transit and peering agreements
impact efficiency loss in terms of provisioning costs.



4. NETWORK MODEL
Consider a set of ISPs I = {1, . . . n} and a set of cities C =

{1, . . . m}. ISP i serves cities Ci ⊆ C. Let V = {(i, u) : i ∈
I, u ∈ Ci} ⊆ (I × C) and consider a directed network g0 =
(V, E, D) with vertex set V and edge set E. Define D : E → <+

0

as a distance metric over set E. D(e) indicates the length of edge
e. Vertex (i, u) represents ISP i at city u. Edge e = (i, u, j, v)
represents a link between ISP i at city u and ISP j at city v used
to carry traffic from ISP i to ISP j. Let igi(e) and igc(e) represent
the ingress ISP and the ingress city of edge e, respectively. Also,
let egi(e) and egc(e) represent the egress ISP and the egress city of
edge e, respectively. D(e) indicates the length of the shortest band-
width link one can deploy between city igc(e) and city egc(e). Let
erd(e) represent the edge in the reverse direction of edge e, which
always exists in g0. Let Ei = {e = (i, u, j, v)} ⊆ E represent the
set of all edges originated in ISP i.

Let B = {e = (i, u, j, v) : i 6= j} ⊆ E represent the subset of
edges in E between different ISPs. We require edges between dif-
ferent ISPs to have an extra attribute a ∈ A = {−1, 0, +1}, which
defines the type of interconnection agreement. Edge e = (i, u, j, v)
represents a peering link if a = 0 and a transit link otherwise. If
a = −1(+1) this link is used under a transit agreement in which
ISP i buys (sells) transit to ISP j. Let Ba ⊆ B, with a ∈ A, indi-
cate the subset of edges in B with attribute a. If edge e ∈ Ba, then
edge erd(e) ∈ B−a. Let Ba(i, j) ⊆ B indicate the set of edges in
Ba used to interconnect from ISP i to ISP j. Let ζ(e) = a, defined
for e ∈ B, indicate the attribute of edge e.

Let P (i, u, j, v) represent the set of (directed) paths in g0 from
vertex (i, u) to vertex (j, v) and let P =

S
i∈I

S
u∈Ci

S
j∈I

S
v∈Cj

P (i, u, j, v) represent the set of all these paths in the network.
A path p in this set is written as p = [e1, . . . ez], where ek ∈
E, for 1 6 k 6 z and igi(e1) = i, igc(e1) = u, egi(ez) =
j, egc(ex) = v and egi(ek−1) = igi(ek), egc(ek−1) = igc(ek),
for 2 6 k 6 z. Additionally, let P (i, u, j, v) ⊆ P (i, u, j, v) con-
tain all the paths in G0 of the form p = [e1, . . . ez] such that if
∃k:26k6z : egi(ek−1) 6= egi(ek) then k = z. That is, if i = j
then P (i, u, j, v) is the set of all paths internal to ISP i that origi-
nate in vertex (i, u) and terminate in vertex (i, v). If, on the other
hand, i 6= j then P (i, u, j, v) is the set of all paths that originate at
vertex (i, u) internal to ISP i plus an edge to interconnect to ISP j
at city v. Finally, let P =

S
i∈I

S
uinCi

S
j∈I

S
v∈Cj

P (i, u, j, v)

represent the set of all these paths in the network.

Let θ = (i′, u′, j′, v′) represent a type of traffic in g0 and let
F = {(i′, u′, j′, v′) : i′, j′ ∈ I, u′ ∈ Ci′ , v

′ ∈ Cj′} repre-
sent the set of all possible types of traffic flows. Traffic of type
θ = (i′, u′, j′, v′) originates from end-users of ISP i′ in city u′ and
is destined to end-users of ISP j′ in city v′. Let egif(θ) indicate
the ISP to whom the traffic is destined. Additionally, let fθ(p) rep-
resent the amount of traffic of type θ in path p. The total flow of
traffic in path p is therefore given f(p) =

P
θ∈F fθ(p). The flow

of traffic of type θ in edge e is given by fθ(e) =
P

p∈P :e∈p fθ(p)

and the total traffic in edge e is given by f(e) =
P

p∈P :e∈p f(p).
Let d(θ) indicate the fixed exogenous demand for the transport
of traffic of type θ and define d(θ, (i, u)) in the following way:
d((i′, u′, j′, v′), (i, u)) = −d(i′, u′, j′, v′) if i = i′ ∧ u = u′,
d((i′, u′, j′, v′), (i, u)) = d(i′, u′, j′, v′) if i = j′ ∧ u = v′ and
d((i′, u′, j′, v′), (i, u)) = 0 otherwise.

Define d = [d(θ), θ ∈ F ] as the exogenous demand matrix and
define G0(d) as the set of all possible graphs that allow for realizing
demand d. Throughout this work, we will assume that g0 ∈ G0(d),
that is, it is possible to derive a network over g0 to meet the exoge-
nous demand for the transport of traffic d. Finally, note that the
model introduced in this section is very general and therefore very
flexible. For example, one can easily note that this model allows
for considering NAPs when we allow for several ISPs to meet at
the same city by deploying internal links to this city and none of
them serves end-users there.

5. N-ISP NON-COOPERATIVE GAME
Consider the non-cooperative n-ISP game that arises in the net-

work setting defined above. Let Γ = [(S1, . . . Sn); (Π1, . . . Πn)]
represent the normal form of this game, where Si is the strategy set
of ISP i and Πi represents its profit function. Additionally, let si

represent a generic strategy for ISP i and let s = Πi∈Isi represent
a generic joint strategy for all ISPs. Let S = Πi∈ISi represent
the space of joint strategies for all ISPs. Sometimes we will write
s = (si, s−i), where s−i = Πj∈I\{i}sj is the joint strategy of
all ISPs other than ISP i. Similarly, we also write S = Si × S−i,
where S−i represents the joint strategy space of all ISPs except ISP
i. The reminder of this section specifies Si and Πi in detail.

ISP i chooses all traffic flows within its network and the traffic
flows to send to other ISPs. In other words, a strategy for ISP i is
si = {fθ(e) : e ∈ Ei, θ ∈ F}. An assignment of traffic flows
must however satisfy a number of constraints, which implicitly de-
fine Si as a compact convex set of strategies with we will assume to
be non-empty. Let In(i, u) = {e ∈ E : egi(e) = i, egc(e) = u}
represent the set of edges in the network that terminate at vertex
(i, u). Similarly, let Out(i, u) = {e ∈ E : igi(e) = i, igc(e) =
u} represent the set of edges in the network that originate at vertex
(i, u). The first two constraints ensure that traffic flows are non-
negative and that flow is conserved at every vertex in the network:

(1) fθ(e) > 0, ∀θ ∈ F, ∀e ∈ E

(2)
P

e∈ In(i,u) fθ(e)−
P

e∈ Out(i,u) fθ(e) = d(θ, (i, u))

∀θ ∈ F, ∀(i, u) ∈ V

The third constraint indicates that traffic flows must conform to
the type of interconnection agreements established. Let TB =
{fθ(e) : e ∈ B, θ ∈ F} represent the set of all traffic between
ISPs. Let TRS(j, TB) indicate the Transit Reachability Set of ISP
j given TB. This set, which we will define formally later in this
section, includes ISP j, all its customers and all the customers of
customers of ISP j recursively. If ISP i peers with or sells transit to
ISP j, then ISP i cannot send, over that connection, traffic destined
to an ISP that does not belong to TRS(j, TB). This constraint
translates to:

(3) egif(θ) /∈ TRS(egi(e), TB) ⇒ fθ(e) = 0
∀θ ∈ F, ∀e ∈ (B0

S
B+1)

The fourth constraint indicates that an ISP can only introduce
traffic into a peering link to another ISP, if the latter ISP signals that
it also wants to peer with the former ISP. We will assume that an ISP
signals that it wants to peer by sending traffic over a peering link.
Therefore, an ISP can only introduce traffic into a peering link if it
receives traffic over the peering link in the reverse direction. The
same sort of constraint applies when an ISP sells transit to another
ISP and, hence, the following constraint:



(4) fθ(erd(e)) = 0 ⇒ fθ(e) = 0,∀θ ∈ F, ∀e ∈ (B0

S
B+1)

The last constraint prevents an ISP, say ISP i, from sending traffic
destined to itself over a transit link used under an agreement in
which he sells transit to another ISP, say ISP j. If that was possible,
ISP i could increase its profit indefinitely by sending traffic to ISP j
which would later return to ISP i, at the expense of ISP j. Formally,

(5) egif(θ) = igi(e) ⇒ fθ(e) = 0,∀θ ∈ F, ∀e ∈ B+1.

To define formally TRS(j, TB) let TRSh(j, TB) indicate the
h−level TRS of ISP j given traffic flows TB, for any integer h :
0 6 h 6 n−2. For an ISP belonging to this set there are exactly h
other ISPs between him and ISP j. We have TRSh(j, TB) = {j}
for h = 0. The following definition holds for 1 6 h 6 n− 2:

TRSh(j, TB) = {i′ ∈ I\TRSh−1(j, TB) : ∃j′ ∈ TRSh−1(j, TB),
∃e ∈ B−1(i′, j′),∃θ ∈ F : fθ(e) > 0}

(1)
Using this recursive definition for TRSh(j, TB), we can say

that TRS(j, TB) = {j′ ∈ I : ∃h > 0 : j′ ∈ TRSh(j, TB)}. It
remains to define Πi to fully specify the normal form for game
Γ. Πi is a function of the strategy of ISP i and of the strate-
gies of the other ISPs and therefore we can write Πi(si, s−i). Let
PT (M, e, a), defined for e = (i, u, j, v) ∈ (B−1

S
B+1) : i < j

and for a ∈ {−1, +1}, represent the observed price per unit of
traffic for a transit agreement to carry at most M Mbps over edge
e, excluding the cost of the transit link. Also, let PB(M, L) repre-
sent the observed price per unit of traffic for a link to carry M Mbps
over a distance of L miles. We will assume that this price includes
termination costs and that links are full-duplex and priced accord-
ing to the maximum flow of traffic in either direction. The functions
PT and PB were estimated in [7]. According to the results there,
these functions are continuous and exhibit strict economies of scale
in their arguments.

We can define Πi(si, s−i) =
P

e∈Ei
TΠ(e, si, s−i) by using

the additional definitions in Table 1. Let η(e) indicate how much of
the cost of a link each ISP pays. Assuming that two ISPs that peer
split equally the cost of the peering link and that the ISP buying
transit pays the link entirely, that is,

C(e, si, s−i) Cost/unit of traffic to provision edge e
R(e, si, s−i) Revenue/unit of traffic over edge e
Π(e, si, s−i) = R(e, si, s−i) − C(e, si, s−i) Profit/unit of traffic over edge e
TΠ(e, si, s−i) = Π(e, si, s−i).f(e) Total profit over edge e
T C(e, si, s−i) = C(e, si, s−i).f(e) Total cost over edge e

TΠ′(e, si, s−i) Marginal profit over edge e

T C′(e, si, s−i) Marginal cost over edge e

Table 1: Definition of profit and cost functions over edges.

η(e) =

8
<
:

1, if e ∈ (E\BSB−1),
1/2, if e ∈ B0,
0, if e ∈ B+1.

(2)

and using mf(e) = max{f(e), f(erd(e))} to represent the
largest flow between edges e and erd(e), the following definitions
hold: C(e, si, s−i) = PB(mf(e), D(e)).mf(e)/f(e).η(e) and
R(e, si, s−i) = PT (mf(e), e, ζ(e)).mf(e)/f(e).ζ(e) when e =
(i, u, j, v) ∈ (B−1

S
B+1) : i < j, otherwise R(e, si, s−i) =

PT (mf(e), erd(e), ζ(erd(e))).mf(e)/f(e).ζ(erd(e)) when e =
(i, u, j, v) ∈ (B−1

S
B+1) : i > j; and 0 when e ∈ (E\BSB0).

Finally, we have TΠ′(e, si, s−i) = ∂TΠ(e, si, s−i)/∂f(e) if f(e)
≥ f(erd(e)) and TΠ′(e, si, s−i) = ∂TΠ(e, si, s−i)/∂f(erd(e))

otherwise. A similar definition holds for TC′(e, si, s−i) with re-
spect to C(e, si, s−i). We can also write Πi(si, s−i) in terms of
flows over paths: Πi(si, s−i) =

P
u∈Ci

P
j∈I

P
v∈Cj

P
p∈P (i,u,j,v)

TΠ(p, si, s−i) together with the definitions in Table 2.

C(p, si, s−i) =
P

e∈p C(e, si, s−i) Cost/unit of traffic to provision path p

R(p, si, s−i) =
P

e∈p R(e, si, s−i) Revenue/unit of traffic over path p

Π(p, si, s−i) = R(p, si, s−i) − C(p, si, s−i) Profit/unit of traffic over path p

TΠ(p, si, s−i) = Π(p, si, s−i).f(p) Total profit over path p

T C(p, si, s−i) = C(p, si, s−i).f(p) Total cost over path p

TΠ′(e, si, s−i) =
P

e∈p TΠ′(e, si, s−i) Marginal profit over path p

T C′(e, si, s−i) =
P

e∈p T C′(e, si, s−i) Marginal cost over path p

Table 2: Definition of profit and cost functions over paths.

It will be helpful to note several important properties of the func-
tions introduced before: i) Π(e, si, s−i) can be positive or negative
because it accounts for the transfer payments from selling and buy-
ing transit; ii) C(e, si, s−i) is always positive (and only zero if
f(e) = 0); iii) TC(e, si, s−i) is increasing in any fθ(e) in its ar-
gument; iv) TC′(e, si, s−i) is non-increasing in any fθ(e) in its
argument. All functions defined heretofore are continuous. These
properties extend trivially to the counterpart functions defined in
terms of paths.

Finally, note that the problem we want to solve is completely
defined by the network graph g0, the exogenous demand d (and we
will assume g0 ∈ G0(d)) and the profit per-unit of flow functions
Π(e, si, s−i), which use the exogenous prices functions PB and
PT . We will call (g0, d, PB, PT ) an instance of our problem. We
will call G(g0, d) the set of all feasible networks for this problem,
that is, all networks that can meet the exogenous demand d over g0,
which we will assume to be non-empty.

6. ADDITIONAL DEFINITIONS
We want to study flows at Nash Equilibrium for an instance

(g0, d, PB, PT ) of our problem (g0 ∈ G0(d)). Such flows are
characterized by s∗ = (s∗i , s∗−i) with Πi(s

∗
i , s∗−i) > Πi(si, s

∗
−i),

for all si ∈ Si and for all i ∈ I [24] and induce a set of net-
work G∗(g0, d, PB, PT ), which includes a subset of links in g0,
namely those that carry traffic. Also, intuitively, and if we assume
that flows in the network are infinitely divisible [13, 14], we may
expect each unit of such a flow (no matter how small it is) to be
routed along a path of maximum profit per unit of flow, otherwise
such a flow would be rerouted in a path that yields a higher profit
per-unit of flow. This notion of equilibrium is called Wardrop equi-
librium [39].

We can then write for our problem the following definition: a set
of flows s∗ feasible for instance (g0, d, PG, PT ) is at Nash equi-
librium if and only if for every pair {(i, u) ∈ V ; (j, v) ∈ V } and
p1, p2 in P (i, u, j, v) we have: if f∗θ (p1) > 0 for some θ ∈ F
then Π(p1, s

∗
i , s∗−i) > Π(p2, s

∗
i , s∗−i). Therefore, we can say that

Π(p, s∗i , s∗−i) 6 Π∗i,u,j,v for every path p in P (i, u, j, v), where
Π∗i,u,j,v represents the profit per unit of flow along any path p in
P (i, u, j, v) used to deliver traffic from (i, u) to (j, v) in the net-
work at Nash equilibrium.

We call optimal any network that would emerge if ISPs were
to cooperate to reduce overall provisioning costs, still using transit
and peering agreements to interconnect. We denote this set of net-
works by G∗∗(g0, d, PB). This overall cost minimization problem
can be written in the following way:



mins
P

i,u,j,v,p)

P
θ∈F TC(p, si, s−i) ⇔

⇔ maxs
P

i,u,j,v,p

P
θ∈F TΠ(p, si, s−i)

(3)

subject to the constraints (1)-(5) introduced before and
P

i,u,j,v,p

indicates
P

i∈I

P
u∈Ci

P
j∈I

P
v∈Cj

P
p∈P (i,u,j,v) Note that the

equivalence in the above expression comes from the fact that the
sum of all transit payments cancel out and therefore the provision-
ing cost of an optimal network is independent of the prices of tran-
sit.

Therefore, we can also say that for a feasible set of flows s∗∗

optimal for instance (g0, d, PB, PT ), we have: if f∗∗θ (p1) > 0,
for some θ ∈ F , then TΠ′(p1, s

∗∗
i , s∗∗−i) > TΠ′(p2, s

∗∗
i , s∗∗−i), for

every pair {(i, u) ∈ V ; (j, v) ∈ V }, for any two paths p1, p2 ∈
P (i, u, j, v). Also, note that this definition for s∗∗ means that ISPs
route traffic over paths of maximal profit per unit of flow. There-
fore, we can say that TΠ′(p, s∗∗i , s∗∗−i) 6 TΠ′∗∗i,u,j,v , for every path
p in P (i, u, j, v), where TΠ′∗∗i,u,j,v represents the marginal profit
along any path used to deliver traffic from (i, u) ∈ V to (j, v) ∈ V
in the optimal network.

The striking similarity between the characterization of optimal
flows and flows at Nash equilibrium [2] provides an interpretation
for optimal flows as flows at Nash equilibrium with respect to dif-
ferent profit-per-unit-of-flow functions. Formally, we can say that a
set of flows s∗∗ feasible for exogenous parameters g0, d and profit
functions Π is optimal if and only if it is at Nash equilibrium for
exogenous parameters g0, d and profit functions TΠ′. Note that
TΠ′(e, si, s−i) = Π(e, si, s−i) + f(e).∂Π(e, si, s−i)/∂f(e).
While the definition of Nash equilibrium takes into account only
the term Π(e, si, s−i), which captures the profit per unit of flow
over edge e, in this case there is an additional term that accounts
for the change in profit experienced by the inframarginal flow on
this edge. This second term induces the flow on each edge to be-
have unselfishly and it is usually called the altruistic term.

Let IC(g, g0, d, PB) represent the inefficiency cost of network
g ∈ G(g0, d), which is defined as the the ratio between the costs
to provision this network and the costs to provision any optimal
network in G∗∗(g0, d, PB), that is,

IC(g, g0, d, PB) =
P

e∈E TC(e, si, s−i)/
P

e∈E TC(e, s∗∗i , s∗∗−i)
=
P

i,u,j,v

P
p∈P (i,u,j,v) TC(p, si, s−i)/P

i,u,j,v

P
p∈P (i,u,j,v) TC(p, s∗∗i , s∗∗−i)

(4)
where s and s∗∗ are, respectively, the set of flows in network g

and in any of the optimal networks. Clearly, IC(g, g0, d, PB) > 1
for all possible networks g ∈ G(g0, d) and there is no inefficiency
cost when this ratio equals 1.

We use the term cost of anarchy to refer to an upper bound
on the inefficiency cost over all possible Nash networks. That is,
the cost of anarchy is the worst possible inefficiency cost experi-
enced at Nash equilibrium taken over all the possible assignments
of (g0, d, PB, PT ), as long as g0 ∈ G0(d). Therefore, the cost of
anarchy depends exclusively on the price of bandwidth, PB, be-
cause any other changes in the other exogenous parameters of our
model will simply result in different topologies. Let κ(PB) denote
the cost of anarchy. Formally,

κ(PB) =
Sup(g0,d,PB,PT ):g0∈G0(d),g∗∈G∗(g0,d,PB,PT ){IC(g∗, g0, d, PB)}

(5)

The cost of anarchy is also always greater than 1. A cost of
anarchy of 1 means that there is never inefficiency cost no matter
the network graph, the exogenous demand, the exogenous price of
bandwidth or the exogenous prices of transit considered. Finally,
consider the following definitions for λ(p) and for µ(p) for all p ∈
P (i, u, j, v) (similar to those introduced in [32]):

TC′(p, si(p, λ(p)f(p)), s−i(prd(p), λ(p)f(prd(p)))) =
C(p, si, s−i)

(6)

µ(p) =
C(p, si(p, λ(p)f(p)), s−i(prd(p), λ(p)f(prd(p))))/C(p, si, s−i)

(7)
Existence of λ(p) ∈ (0, 1) follows from the Intermediate Value

Theorem and the facts that C(p, si, s−i) ≥ TC′(p, si, s−i) and
that TC′(p, si(p, 0), s−i(prd(p), 0)) ≥ C(p, si(p, x), s−i(p, x)),
∀x ≥ 0, where s(p, x) indicates the same strategy as s expect that
f(p) is substituted by x. λ(p) represents the shrinking factor that
must be applied to flow f(p) in order for its marginal cost to be
equal to its cost per unit of traffic. µ(p) represents the ratio be-
tween the cost per unit of traffic of the reduced flow and that of the
original flow.

7. THE COST OF ANARCHY

Existence of optimal network and Nash networks is established
in [7], which also shows that these networks are not unique. We
now state the main result of this section (refer to [10] for a detailed
proof):

Result 1

κ(PB) ≥ supp∈P (1− 1/µ(p) + λ(p)/µ(p))/(λ(p)µ(p)) (8)

Assume that price of bandwidth is given by an exponential func-
tion of the form PB(M, L).M = αMβP (L) where α ≥ 0,
β ∈ (0, 1) represents the level of economies of scale and P (L)
represents the dependency of this price function on the length of
the link. Empirical evidence to support this sort of price function
was provided in [7]. In this case, we have that λ(p) = β−1/(β−1)

and µ(p) = β−1 for every p ∈ P (i, u, j, v), which imply κ(β) ≥
β1/(β−1)(β + β2(β−1) − β2). Figure 1 shows how this lower
bound for the cost of anarchy behaves as a function of the level
of economies of scale in the price of bandwidth.

A little algebra shows that this lower bound for the cost of an-
archy converges to 1 as β goes both to 0 and to 1. When the
level of economies of scale is significant, which happens for β
close to 0, ISPs observe the benefits from aggregating traffic, both
within their networks and over interconnection agreements, and
seize these benefits, which results in a low anarchy value. On the
other hand, when economies of scale are not very significant, which
happens for β close to 1, the cost per unit of bandwidth deployed
is about the same everywhere in the network and therefore there is
no immediate benefit from aggregating traffic. In other words, the
optimal network is not much better than the network at Nash equi-
librium and, again, anarchy is low. The maximum for this lower
bound for the cost of anarchy is 26%. The results provided in [7]
show that currently β ' 0.5269. According to Figure 1, the cost
of anarchy for this level of β is at least 25%.
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Figure 1: Lower bound for the cost of anarchy as a function of
the level of economies of scale in the price of bandwidth.

Note that this lower bound for the cost of anarchy is tight. In
fact, it occurs in networks where only peering agreements are used
(in which f∗(p) = f∗∗(p) for every path p in the network, and
such networks exist at Nash equilibrium as discussed in [9]). Fi-
nally, note that the cost of anarchy converges to 1 as the level of
economies of scale vanishes and therefore our results blend per-
fectly with those encountered in the literature, since in [32] a price
of anarchy is computed for β ≥ 1, which converges to 1 as β gets
close to 1.

8. LOSS AND INTERCONNECTION
We want to study the relationship between inefficiency cost and

the type of interconnection agreement. For this matter, consider the
following result.

Result 2
For an assignment of the exogenous parameters g0, d, PB, PT ,

such that ∂Π(p, si, s−i)/∂f(p) = (β− 1).Π(p, si, s−i)/f(p) for
every p ∈ P (i, u, j, v) and for some constant β ∈ [0, 1], with g0 ∈
G0(d), we have G∗(g0, d, PB, PT ) = G∗∗(g0, d, PB, PT ).

Proof: We will show that the flows of a strategy s∗ at Nash equi-
librium are also the flows of an optimal network and vice-versa.
Consider two paths p1 and p2 in P (i, u, j, v) used to deliver traffic
at Nash equilibrium. Therefore, we must have Π(p1, s

∗
i , s∗−i) =

Π(p2, s
∗
i , s∗−i) > Π(p3, s

∗
i , s∗−i), where p3 is any unused path in

P (i, u, j, v). Recall that flows in the optimal network for paths
p1, p2, p3 in P (i, u, j, v) are characterized by:

TΠ′(p1, si, s−i) = Π(p1, si, s−i) + f(p1).∂Π(p1, si, s−i)/∂f(p1)
= Π(p2, si, s−i) + f(p2).∂Π(p2, si, s−i)/∂f(p2)
= TΠ′(p2, si, s−i)f(p2) > TΠ′(p3, si, s−i)
= Π(p3, si, s−i) + f(p3).∂Π(p3, si, s−i)/∂f(p3)

(9)

It follows that:

Π(p1, s∗i , s∗−i) + f(p1).∂Π(p1, s∗i , s∗−i)/∂f(p1

= Π(p1, s∗i , s∗−i) + (β − 1).f(p1)Π(p1, s∗i , s∗−i)/f(p1)
= Π(p1, s∗i , s∗−i) + (β − 1).Π(p1, s∗i , s∗−i)
= Π(p2, s∗i , s∗−i) + (β − 1).Π(p2, s∗i , s∗−i)
= Π(p2, s∗i , s∗−i) + (β − 1).f(p2)Π(p, s∗i , s∗−i)/f(p2)
= Π(p2, s∗i , s∗−i) + f(p2).∂Π(p2, s∗i , s∗−i)/∂f(p2)

(10)

and therefore TΠ′(p1, s
∗
i , s∗−i) = TΠ′(p2, s

∗
i , s∗−i). To show

that s∗ is also the set of flows in an optimal network, it suffices
to show, for example, that TΠ′(p3, s

∗
i , s∗−i) < TΠ′(p2, s

∗
i , s∗−i)

for any unused path p3 in s∗. Noting that TΠ′(p2, s
∗
i , s∗−i) =

βΠ(p2, si, s−i) it follows that

TΠ′(p3, s∗i , s∗−i) = Π(p3, s∗i , s∗−i) + f(p3).∂Π(p3, s∗i , s∗−i)/∂f(p3)
= Π(p3, s∗i , s∗−i) + (β − 1).f(p3).Πi,u,j,v(s∗i , s∗−i)/f(p3)
= βΠ(p3, s∗i , s∗−i) < βΠ(p2, s∗i , s∗−i) = TΠ′(p2, s∗i , s∗−i)

(11)
The condition on the shape of the profit function in this result re-

quires, essentially, that the profit per unit of traffic follows an expo-
nential law, but with the same level of economies of scale β every-
where in the network. In such a case there is no inefficiency cost
at Nash equilibrium. Thus, inefficiency cost might arise from the
fact that the market for the transport of traffic is not homogenous
and there are different levels of economies of scale across cities.
Links where the level of economies of scale is higher tend to attract
more traffic, because ISPs realize the benefits from transporting ag-
gregate traffic over these links as opposed to splitting such traffic
over separate links. While these advantages may be fully explored
when providers cooperate to minimize overall provisioning costs,
that will hardly be the case when they behave selfishly. Each ISP
seizes the benefits of strong economies of scale within its own net-
work (and over interconnection agreements to other ISPs whenever
possible), but this optimization is done locally at each network. As
a consequence, traffic might be shifted differently across paths and
might be handed-off between ISPs at sub-optimal interconnection
points, which, on aggregate, results in higher provisioning costs.

Consider the model introduced in the previous section but now
assume that the cost of every link used for a transit agreement be-
comes infinity, or in other words, assume that only peering agree-
ments are allowed between ISPs. Mathematically, C(e, si, s−i) =
∞ for e ∈ (B−1

S
B+1). In this modified version of our model,

let G∗p(g0, d, PB, PT ) represent a network at Nash equilibrium
and let G∗∗p (g0, d, PB) represent an optimal network (always with
g0 ∈ G0(d). In this case, the profit function of each ISP reduces
to a summation of costs, since no revenues can be realized. But
the cost of an internal link and the cost of a peering agreement are
the same because the cost of a peering agreement is just the cost
of the bandwidth link between the peering ISPs. Therefore, the
cost of a peering agreement exhibits the same level of economies
of scale as internal links do. Hence, in a world where only peering
agreements are allowed, no inefficiency cost arises between Nash
and optimal networks because these networks are the same, that
is, G∗p(g0, d, PB, PT ) = G∗∗p (g0, d, PB), for all possible assign-
ments of (g0, d, PB) with g0 ∈ G0(d) and for any PT .

Another way to look at this issue is to notice that as a peering
agreement is no more than establishing a direct link between the
premises of the two interconnecting ISPs, its price reflects directly
the true cost of the infrastructure needed to provision it. In other
words, peering agreements do not introduce any distortion between
prices and costs and when prices reflect costs, we expect ineffi-



ciency to be low. Inefficiency costs arise in the presence of transit
agreements. According to [7], the price of a transit agreement ex-
hibits a different level of economies of scale than internal links and
peering agreements do. This is because transit agreements include
a service charge that does not reflect the true cost that the ISP sell-
ing transit incurs to transport the traffic to and from the customer
ISP. Usually, this fee is only a function of the amount of traffic
exchanged and does not take into account, by any measure, the dis-
tribution of sources and destinations for such traffic. In practice,
this fee is mainly determined by market conditions and thus it is
poorly related to the true managerial and routing costs that the ISP
selling transit incurs. Therefore, a transit agreement includes a cer-
tain element of hidden information because the ISP selling transit
commits to provide a service for a fee, established a-priori, without
knowing exactly the true cost it will incur to provide such service.
We can then expect this distortion between costs and prices to result
in some inefficiency.

9. MANIPULATING TRANSIT PRICES
We showed that when only peering agreements are allowed no

inefficiency cost arises. This only-peering situation can be mod-
elled by adding a new constraint to the model before. To rule out
transit agreements, we can simply say that traffic in any transit link
in the network must equal zero. Therefore, the overall cost mini-
mization problem that defines the optimal network is, in the case of
only peering, a minimization problem over a feasible set that is a
subset of the feasible set of the overall cost minimization problem
when both peering and transit agreements are allowed. Therefore,
it is trivial to show that the costs to provision the optimal network
cannot increase when transit becomes available.

In reality, transit agreements contribute significantly to reduce
provisioning costs because they allow for better aggregating traffic
that is destined to the same places in the network, which might in
turn result in networks with fewer links. For example, a network
with n nodes and only peering requires on the order of n(n− 1)/2
links, whereas a network with only transit agreements will most
likely result in a tree structure that only needs on the order of
n.log(n) links. NAPs have also emerged as a way to reduce the
number of links in the network. An ISP can run a fat single link
to the NAP, which it uses to carry all the traffic to all the ISPs with
whom it interconnects at the NAP, instead of running several sepa-
rate links, one to each of these ISPs.

In the case of networks with both peering and transit agreements,
the Nash equilibrium is not unique and different Nash networks can
exhibit different provisioning costs. The optimal network is not
unique as well. However, all optimal networks will have the same
overall provisioning cost. More importantly, an optimal network
does not depend on the prices of transit. This is because the opti-
mal network is a cost minimization problem over the entire network
and whatever payments ISPs make to each do not really matter (see
expression 7). The fact that sometimes the optimal network uses
transit links depends only on how using these links allows for ag-
gregating more traffic thus reducing costs.

We are now interested in knowing if there are cases in which
there exist Nash networks that are strictly more expensive than any
optimal network. If this is the case it will be interesting to know
if there are transit prices that make a network at Nash equilibrium
look more like an optimal network. If so, a regulator could help
reduce overall provisioning costs by manipulating such prices.

The following is a very simple example that shows that a Nash
network can be more expensive than the optimal network. Consider
ISP i serving city u and city v and ISP j serving city r. There is
an exogenous demand of 10 Mbps from users of ISP j at city r
to users of city ISP i at city v (we can assume that there is also
a demand of traffic less than 10 Mbps from the latter users to the
former users, but this changes nothing in the what come next). All
other demand in the network is set to zero. Furthermore, assume
that the length of shortest links between city u and city r, between
city v and city r and between city u and city v are, respectively,
2105, 2125 and 332 miles, which is clearly a realizable network.
Assume that the price of bandwidth links is given by the function
PB(M, L) = 248.29M0.5269L0.3774 which we have estimated in
previous work [7]. Figure 2 illustrates this network.
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Figure 2: Example of two ISPs serving three cities in which
there is a Nash network strictly more expensive than an optimal
network.

In this case, the optimal network is to send 10 Mbps from ISP j
at city r to ISP i at city v for a total provisioning cost of $15050.
Now, consider the network in which ISP i at city u and ISP j at city
r peer. In this latter case, ISP i and ISP j pay a total cost of $14970
and $7500, respectively, for a total provisioning cost of $22740.
We can show that this network, which is more expensive than the
optimal network, is at Nash equilibrium. For that, we will show
that ISP i and ISP j cannot agree to change it.

An alternative network would be to have ISP i at city v and ISP
j at city r peer. In this case, both ISP i and ISP j would have to pay
$7525. Therefore, ISP i is not willing to proceed with the change.
Other alternative networks include transit agreements. Consider the
network in which ISP i at city v buys transit from ISP j at city r.
In this case, ISP i would have to pay $15050+T and ISP j would
have receive T , where T represents the transit payment. Therefore,
ISP i would always be worse off and would not agree to change. A
similar reasoning applies when ISP i at city v sells transit to ISP j
at city r. The remaining two network configurations involve transit
between ISP i at city u and ISP j at city r. Consider the network in
which ISP i at city u buys transit from ISP j at city r. In this case,
ISP i would have to pay $22470+T and ISP j would have receive
T , where again T represents the transit payment. Therefore, ISP i
would always be worse off and would not agree to change. Finally,
consider the case in which ISP i at city u sells transit to ISP j at
city r. In this case, ISP i would incur a cost of $7470-T and ISP
j would incur a cost of $15000+T. Therefore, ISP j would always
become worse off and would not agree to change. In sum, ISP i
and ISP j cannot find an alternative network to which they would
both agree to change and the network with the peering link between
ISP i at city u and ISP j at city r (and the internal link in ISP i’s
network between city u and city v) is a Nash equilibrium, which is
more expensive to provision than the optimal network.



Finally, note that not all possible networks in the previous exam-
ple are at Nash equilibrium. For example, the network in which ISP
i at city u buys transit from ISP j at city r is not a Nash equilibrium.
To see this, note that under that network ISP i pays $22470+T1 and
ISP j receives T1, where T1 is the transit payment. But, consider
the network in which ISP i at city v buys transit from ISP j at city
r. In this case, ISP i pays $15050+T2 and ISP j receives T2, where
T2 is the transit payment in this case. Therefore, any positive pay-
ment T2 between T1 and T1 − 7470 will make both ISPs agree to
change to the latter network and hence the former one is never a
Nash equilibrium.

The example above proves that the market is not efficient to
provision interconnected communication networks because even
when ISPs choose transit prices there exist Nash networks that are
(strictly) more expensive than the optimal networks. The following
result shows that for each optimal network there exist side pay-
ments among ISPs that make this network also a Nash network.

Result 3
For each assignment of the exogenous parameters g0, d, PB, PT ,

with g0 ∈ G0(d), for each optimal network g∗∗ in G∗∗(g0, d, PB)
there exist a set of side payments among ISPs T (i, u, v, j), defined
for i ∈ I, j ∈ I : i < j, u ∈ Ci, j ∈ Cj , that makes g∗∗ at Nash
equilibrium.

Proof: Using the language introduced before, let g∗∗ represent
any optimal network in G∗∗(g0, d, PB) and let g represent any
network in G(g0, d), therefore feasible, since g0 ∈ G0(d). Addi-
tionally, let Π(si, s−i) represent the profit of ISP i under g and let
Π(s∗∗i , s∗∗−i) represent the profit of this ISP under g∗∗, for any i ∈
I . Also, write Π(s∗∗i , s∗∗−i) = Π(si, s−i)+∆Πi(si, s−i, s

∗∗
i , s∗∗−i).

We do not know the sign of each ∆Πi(si, s−i, s
∗∗
i , s∗∗−i), but we

know that

X
i∈I

∆Πi(si, s−i, s
∗∗
i , s∗∗−i) ≥ 0 (12)

We will show that there exist a set of side payments among ISPs
T (i, u, v, j) that make every ISP at least as good off in network g∗∗

as in network g, which is sufficient to prove that network g∗∗ is at
Nash equilibrium once these side payments are realized. In this new
setting, the profit of ISP i becomes Π(s∗∗i , s∗∗−i) = Π(si, s−i) +
∆Πi(si, s−i, s

∗∗
i , s∗∗−i) + ∆T (i) where ∆T (i) is defined by

∆T (i) = −Pi−1
j=1

P
u∈Ci

P
v∈Cj

T (j, v, i, u)

+
Pn

j=i+1

P
u∈Ci

P
v∈Cj

T (i, u, j, v)
(13)

for i = 1, ..., n. Now, proving our theorem reduces to showing
that there exist these side payments T (i, u, j, v) such that ∆T (i)+
∆Πi(si, s−i, s

∗∗
i , s∗∗−i) ≥ 0 for all i = 1, ..., n. We will show this

is true by induction on n. For n = 1 and n = 2 these statements
are trivial. Assume these statements are true for some number n of
ISPs, that is there exist T (i, u, j, v) such that

∆Πi(si, s−i, s
∗∗
i , s∗∗−i)−

Pi−1
j=1

P
u∈Ci

P
v∈Cj

T (j, v, i, u)

+
Pn

j=i+1

P
u∈Ci

P
v∈Cj

T (i, u, j, v) ≥ 0

(14)
for every i = 1, ..., n. We want to show that this implies the

existence of T (i, u, j, v) such that

∆Πi(si, s−i, s
∗∗
i , s∗∗−i)−

Pi−1
j=1

P
u∈Ci

P
v∈Cj

T (j, v, i, u)

+
Pn+1

j=i+1

P
u∈Ci

P
v∈Cj

T (i, u, j, v) ≥ 0

(15)
for every i = 1, ...n +1. Let T (i, u, j, v) = T (i, u, j, v) when j

is less than n+1, and our proof reduces to show that T (i, u, n+1, v)
with v ∈ Cn+1 exist. Summing expression 15 over i = 1, ..., n and
isolating the last term in the last summation, we obtain

Pn
i=1

P
u∈Ci

P
v∈Cn+1

T (i, u, n + 1, v) ≥Pn
i=1−∆Πi(si, s−i, s

∗∗
i , s∗∗−i)+Pn

i=1[
Pi−1

j=1

P
u∈Ci

P
v∈Cj

T (j, v, i, u)−Pn
j=i+1

P
u∈Ci

P
v∈Cj

T (i, u, j, v)] ⇔Pn
i=1

P
u∈Ci

P
v∈Cn+1

T (i, u, n + 1, v) ≥Pn
i=1−∆Πi(si, s−i, s

∗∗
i , s∗∗−i)

(16)

In addition, expression 15 for i = n + 1 implies that

∆Πn+1(sn+1, s−(n+1), s
∗∗
n+1, s∗∗−(n+1)

) ≥Pn
j=1

P
u∈Cn+1

P
v∈Cj

T (j, v, n + 1, u)
(17)

Note that the summation on the right side of this inequality is
the same as the summation on the left side of the last inequality
in expression 17 and hence this summation is bounded from below
and above by expressions 16 and 17. Therefore, for T (i, u, n+1, v)
with v ∈ Cn+1 to exist we need to have

∆Πn+1(sn+1, s−(n+1), s
∗∗
n+1, s∗∗−(n+1)

) ≥Pn
i=1−∆Πi(si, s−i, s

∗∗
i , s∗∗−i)

(18)

which is obviously true, since this is just expression 12 for the
case of n+1 ISPs. Hence, side payments T (i, u, j, v) exist that
make optimal network g∗∗ a Nash network. When these side pay-
ments are realized, this optimal network can be obtained as a result
of the non-cooperative interaction among ISPs. This result can be
seen as an instance of what is known as the Coase theorem [4]: if
there are ways to find further gains from trade then agents will ef-
fect these trades over bargaining [22]. In this case, bargaining is
achieved through the side payments.

10. DISCUSSION AND CONCLUSIONS
This paper addresses the issue of economic inefficiencies in terms

of provisioning costs for interconnected communication networks.
A number of ISPs, assumed to behave rationally, engage in a non-
cooperative game to build their networks and to establish transit
and peering agreements to interconnect and meet some exogenous
demand for the transport of IP traffic between an arbitrary set of
cities. A model of interconnected networks based on the traditional
models of multi-commodity flows is provided to study how the con-
figuration of Nash networks differs from that of a network that min-
imizes overall provisioning costs. We use the term cost of anarchy
to refer to the worst-case efficiency loss in provisioning costs. A
lower and tight bound for the cost of anarchy varies as an inverted
U-shaped function of the level of economies of scale in the price of
bandwidth. Anarchy is low when the latter are either low or high.
For the current level of economies of scale in the price of band-
width, the cost of anarchy is at least 25%.

The cost of anarchy can be seen as the worst-case social cost
to allow several providers to provision the network independently
and selfishly. However, a market with several providers promotes
competition, which is likely to drive down the price of the services



offered over the network. If ISPs were to cooperate or to collude to
provision the cheapest possible network, we would be in the pres-
ence of some sort of over-arching centralized authority that dictates
where ISPs should interconnect and how they should route traffic
within their networks. But one could also expect this entity to max-
imize profits with the services offered over the network and users
would then be facing a monopolist. This monopolist would likely
abuse its market power and extract monopoly rents from users.
Some sort of regulation, most likely price regulation, would then
have to be in place to prevent such behavior. The appropriate reg-
ulation to mitigate the possible harmful effects of the monopolistic
situation described above would come as a cost to the regulator. If
this cost is greater than the cost of anarchy, overall society will be
worse off (where, in this case, society comprises the regulator, the
ISPs and end-users). If this is the case, it is better to let the mar-
ket run and bear the inefficiencies in terms of provisioning costs
that will certainly arise. This will still be cheaper than regulating
the market and will free up the regulator to look at other, possibly
more pertinent, policy issues.

We have also shown that inefficiency costs are primarily related
to transit agreements. In fact, in a world where only peering agree-
ments are allowed no inefficiency arises. However, networks with
only peering agreements become rather expensive. Transit agree-
ments enable the benefits of economies of scale to be realized and
reduce overall provisioning costs. Nevertheless, we showed, by ex-
ample, that there are Nash networks that are strictly more expensive
than optimal networks when ISPs choose transit prices and there-
fore the market for provisioning communication networks with in-
terconnection agreements such as peering and transit designed they
way they are today is inefficient. We have also shown that for every
optimal network there is a set of side payments that makes this net-
work a Nash network. However, it is not guaranteed that ISPs will
realize such payments and overall inefficiency cost is likely to arise.

The market failure identified above suggests that there is scope
for the regulator to intervene, for example, by enforcing side pay-
ments or regulating transit prices. However, to do so, the regulator
would face a series of difficulties that lead us to believe that it is
better to allow the market to run and to give us a good allocation
of bandwidth and interconnection agreements yet possibly not the
optimal one. First, we do not know how often inefficient situations
occur and it would be clearly unwise to have the regulator focus
on welfare loss cases that occur seldom. Second, the regulator is
at a severe disadvantage in terms of accurate knowledge about the
topology of the network and actual traffic flows. In the face of such
lack of information, no regulator could create a model of the net-
work good enough to allow him to identify the appropriate changes
to reduce provisioning costs. Moreover, the changes in the network
that the regulator could promote to reduce provisioning costs de-
pend on the demand for the transport of traffic, which in our model
was considered exogenous. Realistically, a model with endogenous
demand is needed to incorporate the impact on demand of changes
in network costs and, presumably, prices.

Third, and assuming that the regulator can identify these changes,
he would have to devise ways to intervene in the market to change
the behavior of ISPs, which could include designing the proper in-
centive mechanisms to induce ISPs to route traffic flows and/or to
interconnect differently. However, the process of incentive design
and implementation takes time and it is likely that the the state of
the world will have changed by the time the regulator’s policies are,
which could render them useless, if not harmful. Forth, ISPs will

certainly behave differently once they anticipate that the regulator
will act upon the market to mitigate welfare losses. Thus, the model
that the regulator should use to predict the behavior of ISPs would
have to be more complex than the model we presented in this paper,
which does not account for the role of the regulator.

Finally, consider the case of international networks, for which
no regulator holds overall jurisdiction. Networks that span differ-
ent countries operate under the regulatory regime defined by differ-
ent regulators who would then have to cooperate to reduce overall
costs, which is a task that might become quite hard to implement.
Moreover, different regulators might have different incentives and
each of them might behave selfishly to meet his goals, which might
not be aligned with the overarching goal of reducing overall provi-
sioning costs. Taking into account all the issues listed above, it is
reasonable to say that it is extremely difficult for the regulator to act
upon the market inefficiency identified in this paper. It is therefore
fair to acknowledge that it might be better to allow the market to
work, which will result in a good yet possibly not optimal alloca-
tion of bandwidth and of interconnection agreements.
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